CO-PO-PSO MAPPING

Department of Electronics & Communication Engineering B.Tech. ECE

GITA AUTONOMOUS COLLEGE, BHUBANESWAR

Vision of Institution

To foster prosperity through technological advancement by promoting education, innovation, and collaborative research, and to emerge as a globally renowned premier technical institution.

Mission of Institution

- 1. To impart high-quality professional education to students worldwide, fostering innovation, technological advancement, discipline, effective communication skills, and strong moral values.
- 2. To provide a broad-based education that ensures the holistic development of students.
- 3. To leverage expertise in science, technology, and management to deliver comprehensive training in visualizing, synthesizing, and executing projects.
- 4. To nurture a spirit of entrepreneurship and innovation among students.
- 5. To undertake sponsored research and offer consultancy services in industrial, educational, and other socially relevant domains.
- 6. To promote healthy practices such as community service, outreach initiatives, and innovative projects for societal benefit.

Vision of Department

To become a department of national and international repute by applying the latest evolution in the field of electronics and communication, research and development as well as imparting moral values to budding engineers, thereby laying a strong foundation for transforming the future.

Mission of Department

- M1. To offer quality education so as to enable students to compete and succeed globally.
- M2. To provide excellent quality of education, through which creative solutions would be demonstrated as per social requirements.
- M3. To offer universal moral and value based education by promoting activities that address societal needs.
- M4. To create awareness for adhering to the ethical code and knowledge creation as well as correspondence.
- M5. To impart pragmatic education for becoming a centre of excellence leading to the generation and dissemination of knowledge in the field of electronics and communication.

Program Educational Objectives (PEOs)

- PEO1: Our graduates will apply their knowledge and skills to succeed in an electronics and communication engineering career and/or obtain an advanced degree.
- PEO2: Our graduates will apply basic principles and practices of computing grounded in mathematics and science to successfully complete hardware and/or software related engineering projects to meet customers' business objectives and/or productively engage in research.
- PEO3: Our graduates will function ethically, responsively and will remain informed about all the developments of their profession.
- PEO4: Our graduates will successfully function in multi-disciplinary teams.
- PEO5: Our graduates will be able to perform competently in a diversified environment and individually, within a global, societal, and environmental context with ethical and moral behaviour.

Program Specific Outcomes (PSOs)

- PSO1.Should be able to understand the concepts of Electronics & Communication Engineering and their semiconductor technology, consumer electronics, embedded system, communication/networking.
- PSO2. Should have an ability to apply technical knowledge and usage of modern hardware & software tools related to communication engineering for solving real world problems.
- PSO3. Should have the capability to analyse, comprehend, design & develop electronic subsystems / system applications and thus demonstrating professional ethics & concern for societal well-being.

Program Outcomes (POs)

- **PO1: Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis:** Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10.** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12.** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

GITA Autonomous College, Bhubaneswar Department of Electronics & Communication Engineering

Semester: 1	st		Subj	ect Na	me: E	ingine	ering N	Mather	natics	I						
			1				C	ourse	Outco	mes		L				
CO1	Identi	ify, for	mulat	e and	solve]	Engine	eering	proble	ms.							
CO2	Acqu	ire kno	wled	ge abo	ut Adv	vance (Calcul	us.								
CO3	Acqu	ire kno	owled	ge abo	ut Ser	ies sol	ution o	of Diff	erentia	ıl equat	ions.					
CO4	Acqu	ire kno	owled	ge abo	ut Gar	nma a	nd Bet	a func	tion.							
CO5	Acqu	uire knowledge about Gamma and Beta function. uire knowledge about Laplace transform and apply it to solve IVP.														
		CO-PO Mapping CO-PSO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	2	-	-	-	-	-	-	-	-	2	3	-	
CO2	2	2	2	2	-	-	-	-	-	-	-	-	2	3	-	
CO3	3	3	3	2	-	-	-	-	-	-	-	-	3	2	-	
CO4	2	2	2	2	-	-	-	-	-	-	-	-	1	3	-	
CO5	2	3	3	3	-	-	-	-	-	-	-	-	2	2	-	
•	3'High	1			'2' Mo	oderate	ė		'1'	Low		٠.	' No C	orrelation	on	

Semester:	1 st		Subj	ect Na	me: E	Ingine	ering (Chemis	stry							
							C	ourse	Outco	mes		1				
CO1		ify varus batt		fuels b	pased	on coi	mbusti	on pai	ramete	ers and	underst	tand the	e worki	ng prin	ciple of	
CO2	To un condi		nd the	e micro	ostruct	ure of	a give	n allo	y syste	ms and	eutecti	c syster	ns unde	er a give	en set of	
CO3		ethekr corros		dgeofe	electro	chemis	stryano	dcorro	sionsc	iencein	prevent	ingengi	neering	equ	uipment	
CO4	111	·		-	of m	nolecu	lar s _l	pectros	сору	to ar	nalyse	organi	c com	pounds	using	
CO5	Comp	Spectrophotometer. Compare and contrast the chemical behaviour and physical properties of common substance.														
					(CO-PO) Map	ping					CO-PS	SO Maj	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	3	3	3	2	2	-	-	1	1	3	3	3	3	
CO2	3	2	3	3	3	2	2	-	-	1	1	3	3	2	2	
CO3	3	2	3	3	3	2	2	-	-	1	1	3	3	2	2	
CO4	3	2	3	3	3	2	2	-	-	1	1	3	3	1	1	
CO5	3	2	3	3	3	2	2	-	-	1	1	3	3	1	1	
	'3'High	1			'2' Mo	oderate	e e		'1'	Low	I	٠,	-' No C	orrelati	on	

Semester: 1	1 st		Subj	ect Na	me: E	Basic E	lectro	nics E1	nginee	ring						
			ı				C	ourse	Outco	mes		1				
CO1	Unde	rstand	the w	orking	gprinc	iples a	nd app	olicatio	ons of	semico	nductor	diodes				
CO2	Analy	yse the	opera	ation, c	configu	uration	ıs, and	biasin	g of B	JTs.						
CO3	Analy	se the	chara	cterist	ics of	FETs	and fe	edback	conc	epts in	amplific	ers and	oscillat	ors.		
CO4	Unde	rstand	the cl	naracte	ristics	and a	pplicat	tions o	f oper	ational	amplifi	ers.				
CO5	Desig	esign and simplify digital circuits using Boolean algebra and logic gates. CO-PO Mapping CO-PSO Mapping														
					(CO-PO) Map	ping					CO-PS	SO Mar	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	1	1	1	1	1	1	1	1	1	2	3	1	1	
CO2	3	3	2	2	2	1	1	1	2	1	1	2	3	2	2	
CO3	3	3	2	2	2	1	1	1	2	1	1	2	3	2	2	
CO4	3	2	2	2	2	1	1	1	2	1	1	2	3	2	2	
CO5	3	3	3	2	3	1	1	1	2	2	2	2	3	2	2	
	'3'High	1	1		'2' Mo	oderate	2		'1'	Low	l	٠.	·' No C	orrelation	on	

Semester:	1 st		Subj	ect Na	me: B	Basics	of Civ	il Engi	neerin	ıg						
							C	ourse	Outco	mes		l				
CO1	Able	to und	erstan	d the b	pasics	of civi	l engi	neering	g and t	fundam	ental as	pects of	f buildii	ng.		
CO2	Able	to get	the br	ief ove	erview	of gen	neral a	spect o	of buil	ding ma	aterial.					
CO3	Able	to get	brief i	dea ab	out tra	anspor	tation	modes	and p	lanning	<u>.</u>					
CO4	Able	to get	brief i	dea ab	out dr	inking	water	stand	ards aı	nd wate	r treatm	nent pla	nt.			
CO5	Able	le to get brief idea about irrigation network system. CO-PO Mapping CO-PSO Mapping														
					(CO-PO) Map	ping					CO-PS	SO Map	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	1	1	2	-	-	-	1	2	1	1	2	-	2	
CO2	3	1	1	1	3	-	-	-	1	1	1	3	2	-	3	
CO3	3	2	1	1	2	-	-	-	2	2	1	2	2	-	1	
CO4	3	2	2	2	2	-	-	-	1	2	1	3	2	-	2	
CO5	3	2	1	2	3	-	-	-	2	2	1	3	3	-	2	
	'3'High	1	1		'2' Mo	derate	2		'1'	Low	ı	٠.	' No C	orrelatio	on	

Semester:	1 st		Subj	ect Na	me: C	Commi	ınicati	ve Eng	glish							
							C	ourse	Outco	mes						
CO1	Use I	English	lang	uage e	ffectiv	ely in	spoke	n and v	written	forms.						
CO2	Comp	prehen	d the	given 1	texts a	nd res ₁	ond a	pprop	riately							
CO3	Comi	nunica	ite coi	nfident	tly in v	arious	conte	xts an	d diffe	rent cul	ltural sc	enarios	·			
CO4	_	nmunicate confidently in various contexts and different cultural scenarios. quire proficiency in English including reading and listening comprehension, writing and aking skills. Herstand the nuances of spoken English and be effective speakers.														
CO5	Unde	nderstand the nuances of spoken English and be effective speakers.														
					(CO-PO) Map	ping					CO-PS	SO Map	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	3	3	2	3	3	2	1	3	3	3	-	
CO2	2	2	3	3	3	2	2	3	3	2	2	3	3	3	-	
CO3	2	2	3	2	3	2	1	2	2	2	2	3	3	2	-	
CO4	2	1	3	2	3	1	1	2	2	1	2	2	3	2	-	
CO5	1	0	2	1	2	1	1	2	2	2	1	2	2	2	-	
	'3'High	1	1		'2' Mo	derate	2		'1'	Low	I	٤.	-' No C	orrelatio	on	

Semester:	1 st		Subj	ect Na	me: E	ngine	ering (Chemis	stry La	ıb						
			<u> </u>				C	ourse	Outco	mes		1				
CO1		and a			echniq	ues us	ed in c	hemis	try lab	oratory	for sm	all/larg	e scale	water		
CO2	Be ab	le to e	stima	te the i	ions/m	etal io	ns pre	sent in	dome	stic/ind	lustry w	aste wa	ater.			
CO3		te the f				•	echniq	ues for	r analy	ses suc	h as titı	rations,	separat	ion		
CO4		Test the quality of an oil/fat by measuring its iodine or acid value by means of amount of unsaturation for various industrial use. Verify quality of a lubricant by means of its viscosity or flash point which gives their nature &														
CO5	Verify quality of a lubricant by means of its viscosity or flash point which gives their nature & flammability for various industrial applications.															
					(CO-PC) Map	ping					CO-PS	SO Maj	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	1	3	3	1	-	-	2	1	-	1	3	3	3	
CO2	3	3	2	3	2	1	-	-	1	1	-	1	3	3	3	
CO3	3	2	1	3	3	1	-	-	1	1		1	3	3	3	
CO4	3	3	3	2	3	2	1	1	2	2	1	2	2	3	3	
CO5	1	1	1	1	1	1	1	1	3	3	1	2	2	2	3	
	'3'High	1			'2' Mo	oderate	e		'1'	Low	1	٠.	-' No C	orrelati	on	

Semester:	1 st		Subj	ect Na	me: B	Basic E	lectro	nics E	nginee	ring La	b					
							C	ourse	Outco	mes						
CO1	Acqu	ire kno	wled	ge of v	arious	electr	onic c	ompoi	nents,	measur	ing inst	ruments	S.			
CO2	Analy	se circ	cuit w	avefor	ms us	ing an	oscillo	oscope	and f	unction	genera	tor.				
CO3	Imple	menta	tion o	f Diod	le in va	arious	applic	ations	Rectif	fier, Cli	pper, C	lamper.				
CO4	Acqu	ire kno	wled	ge of c	haract	eristic	s of tra	ansisto	rs and	variou	s applic	ations ı	ısing O	p-Amp.		
CO5	Desig	sign digital circuits for various applications using logic gates.														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	2	1	3	-	-	-	1	1	-	2	3	2	2	
CO2	3	3	2	3	3	-	-	-	1	1	-	2	3	2	3	
CO3	3	3	3	2	2	-	-	-	1	1	-	3	3	3	3	
CO4	3	2	3	3	3	-	-	-	1	1	-	3	3	3	3	
CO5	3	3	3	2	3	-	-	-	2	2	-	3	3	3	3	
	'3'High	1	,		'2' Mo	derate	2		'1'	Low		٠.	' No C	orrelation	on	

Semester:	1 st		Subj	ect Na	me: E	Basics	of Civi	il Engi	ineerin	ıg Lab					
			ı				C	ourse	Outco	mes		I			
CO1	Perfo	rm Ma	terial	Testin	g and	Analy	sis.								
CO2	Evalu	iate Ce	ment	and Co	oncret	e Prop	erties.								
CO3	Analy	yse Me	chani	cal Pro	pertie	s of R	einfor	cemen	t.						
CO4	Apply	y Surv	eying	Techn	iques	for Lir	near an	nd Ang	gular N	1easure	ment.				
CO5	Demo	emonstrate Competence in Advanced Surveying Instruments. CO-PO Mapping CO-PSO Mapping													
					(CO-PO) Map	ping					CO-PS	SO Map	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	2	3	-	-	1	-	-	2	2	-	1
CO2	3	1	2	1	2	3	-	-	1	1	-	1	2	-	1
CO3	3	1	2	1	2	3	-	-	1	-	-	2	3	-	1
CO4	3	2	2	1	2	3	-	-	1	1	-	2	2	-	2
CO5	3	1	3	1	2	3	-	-	1	-	-	2	2	-	2
	'3'High	1	1		'2' Mo	oderate	2		'1'	Low	ı	٠.	' No C	orrelatio	on

Semester:	1 st		Subj	ect Na	me: E	Engine	ering (Graphi	cs & I	Design I	Lab				
			ı				C	ourse	Outco	mes					
CO1	Prepa	re and	unde	rstand	drawi	ngs.									
CO2	Use t	he prin	ciples	s of or	thogra	phic p	rojecti	ons.							
CO3		udying nat wil								e able t	o visua	lize thre	ee dime	ensional	objects
CO4	Desig	ign and fabricate surfaces of different shapes. resent the objects in three dimensional appearances.													
CO5	Repre	present the objects in three dimensional appearances.													
					(CO-PC) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	1	2	3	-	-	1	-	-	2	2	-	1
CO2	3	1	2	1	2	3	-	-	1	1	-	1	2	-	1
CO3	3	1	2	1	1	3	-	-	1	-	-	2	3	-	1
CO4	3	2	2	1	1	3	-	-	1	1	-	2	2	-	2
CO5	3	1	3	1	1	3	-	-	1	-	-	2	2	-	2
	'3'High	1	I		'2' Mo	oderate	2		'1'	Low	<u>I</u>	٠-	' No C	orrelatio	on

Semester:	1 st		Subj	ect Na	me: E	English	Lang	uage L	Lab						
			1				C	ourse	Outco	mes		I			
CO1										, to imp					d enable
CO2		and un				_	_			text dr	awn fro	om and	origina	l source	and be
CO3	l l	cipate i		ck inte	rviews	s and l	earn th	ne nuai	nces of	f doing	compar	ny resea	arch in o	order to	prepare
CO4	Practi	Practice the etiquette of a group discussion through practice sessions.													
CO5	Imbibe the knowledge of effective speaking and presentation required for various business context using power point presentations.														
					(CO-PC) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	-	3	3	3	3	-	-	3	2	3
CO2	3	3	3	3	3	-	2	3	3	3	-	-	3	2	2
CO3	3	2	3	3	3	-	2	3	3	2	-	-	3	1	2
CO4	2	1	2	2	3	-	1	2	2	2	-	-	3	-	2
CO5	1	1	2	1	3	-	1	1	1	1	-	-	2	-	1
	'3'High	1	ı		'2' Mo	oderate	2		'1'	Low	ı	٠,	-' No C	orrelati	on

Semester: 2	2 nd		Subj	ect Na	me: E	ngine	ering N	Mather	natics-	-II						
			1				C	ourse	Outco	mes		1				
CO1	Apply	y the k	nowle	edge of	f Math	ematic	es in P	hysica	1 scien	ces and	l Engine	eering.				
CO2	Acqu	ire kno	wled	ge of I	Double	and T	riple l	Integra	ıl and t	their ap	plicatio	ns in er	ngineeri	ng subj	ects.	
CO3	Acqu	ire kno	wled	ge abo	ut Fou	rier se	ries ar	nd Fou	rier tra	ansform	l .					
CO4	Apply	y Knov	wledge	e vecto	or calc	ulus in	engin	neering	g and p	hysical	science	es.				
CO5	Acqu	quire knowledge of Matrix Algebra, Determinants and their applications in engineering subjects														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	-	-	-	-	-	-	-	-	3	2	-	
CO2	2	2	2	2	-	-	-	-	-	-	-	-	1	1	-	
CO3	2	2	2	2	-	-	-	-	-	-	-	-	1	1	-	
CO4	2	2	2	2	-	-	-	-	-	-	-	-	1	1	-	
CO5	3	3	3	2	-	-	-	-	-	-	-	-	3	2	-	
	'3'High	1			'2' Mo	derate	2		'1'	Low	ı	٠,	-' No C	orrelati	on	

Semester: 2	nd		Subj	ect Na	me: E	ngine	ering N	Mechai	nics							
			ı				C	ourse	Outco	mes		<u> </u>				
CO1	Unde	rstand	force	systen	ns and	equili	brium	•								
CO2	Unde	rstand	the de	etails c	of struc	tures	and m	oment	S.							
CO3	Unde	rstand	kinen	natics	and dy	namic	s of pa	articles	s and r	igid bo	dies.					
CO4	Interp	rpret and analyse results from engineering mechanics calculations. lyse safety factors and design constraints when applying mechanics principles.														
CO5	Analy	alyse safety factors and design constraints when applying mechanics principles.														
					(CO-PC) Map	ping					CO-PS	SO Map	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	2	2	2	3	3	2	3	3	3	2	3	
CO2	3	3	2	2	2	1	1	2	3	2	2	2	3	1	2	
CO3	3	2	2	1	1	1	1	2	3	2	2	2	3	1	2	
CO4	3	1	2	1	1	1	1	2	3	2	2	2	3	1	2	
CO5	3	1	2	1	-	-	-	1	2	1	1	1	2	-	1	
,	'3'High	ì	•		'2' Mo	oderate	2		'1'	Low		٠.	-' No C	orrelation	on	

Semester: 2	2 nd		Subj	ect Na	me: E	ingine	ering F	Physics	S							
			<u> </u>				C	ourse	Outco	mes						
CO1								-			_	-		ory syste	ems and nciple.	
CO2		nstrati					_	_						_	rimental cture of	
CO3	l l	a clari	•	•	_	rystal	structı	ires an	d crys	tallogra	phy to	learn ab	out dif	ferent m	aterials	
CO4	applic	cation.	Prin	ciple	of op	-					-	_			s of its bres in	
CO5	in vec	application. Principle of optical fibres will help to know new generation optical fibres in communication systems. Gain some fundamental knowledge about electromagnetism. It will familiarize with some basic used in vector calculus prior to development of Maxwell's electromagnetic wave equations & quantum mechanics.														
					(CO-PC) Map	ping					CO-PS	SO Map	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	3	3	1	2	-	-	-	-	1	2	2	3	
CO2	3	2	1	3	2	2	2	_	-	-	-	2	3	3	2	
CO3	2	2	2	2	3	1	1	_	-	-	-	1	2	2	2	
CO4	3	2	1	2	1	2	1	-	-	-	-	2	2	2	2	
CO5	2	1	2	2	2	1	1	-	-	-	-	3	2	2	2	
	'3'High	l	I		'2' Mo	oderate	2		'1'	Low	I	٠.	' No C	orrelatio	on	

Semester: 2	nd		Subj	ect Na	me: E	Basic E	lectric	al Eng	gineeri	ng						
							C	ourse	Outco	mes						
CO1	Impar circuit		know	ledge	of elec	etrical	quantit	ies and	l provi	de work	king kno	owledge	for the	analysis	s of DC	
CO2				for in			rent, po	ower in	series	and par	rallel RI	LC circu	it with	single pl	nase AC	
CO3	Relate	the ph	ase an	d line	electric	al quar	ntities i	n poly _l	ohase n	etworks	•					
CO4		Learn about magnetism and the basic working principle of static electromagnetic conversion device such as ransformers. Comprehend the working principles of electrical DC and AC machines.														
CO5	Comp															
					(CO-PO) Map	ping					CO-PS	SO Map	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	1	3	2	3	-	-	-	-	-	-	1	3	2	-	
CO2	3	2	1	3	2	-	-	-	-	-	-	2	3	3	-	
CO3	2	1	3	2	3	-	-	-	-	-	-	1	3	2	-	
CO4	3	2	1	2	3	-	-	-	-	-	-	2	3	3	-	
CO5	2	1	2	2	3	-	-	-	-	-	-	1	2	2	-	
	'3'High	1	1		'2' Mo	oderate	2		'1'	Low	1	٠.	' No C	orrelatio	on	

Semester: 2	2nd		Subj	ect Na	me: E	Basics	of Med	chanic	al Eng	ineerin	g					
			1				C	ourse	Outco	mes						
CO1	Under	rstand f	undan	nentals	statics	, frictio	n, trus	s, CG a	nd MI	•						
CO2	Under	stand p	princij	ple of	dynam	ics, w	ork, er	nergy,	impac	t, rotati	onal an	d curvil	inear m	otion.		
CO3		stand a			Therm	odynai	mics: I.	C. Eng	ines, R	efrigera	tors and	Steam (Generato	ors- Steam	m Power	
CO4		Understand Foundry Practices- Pattern, Mould & Casting, Mechanical working of metals - Sheet														
CO5		Braking System. Understand Foundry Practices- Pattern, Mould & Casting, Mechanical working of metals - Sheet metal works.														
					(CO-PO) Map	ping					CO-PS	SO Mar	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	3	-	-	-	-	-	-	3	3	3	3	
CO2	2	3	3	2	3	-	-	-	-	-	-	3	3	3	2	
CO3	2	3	3	2	3	-	-	-	-	-	-	3	3	3	2	
CO4	2	2	3	2	3	-	-	-	-	-	-	3	3	2	2	
CO5	2	2	2	2	2	-	-	-	-	-	-	3	2	2	2	
	'3'High	1 1	1		'2' Mo	oderate			·1 [,]	Low	l	٠.	-' No C	orrelation	on	

Semester:	2 nd		Subj Skills		me: E	Busines	ss Con	nmunio	cation	and Lif	è				
			1				C	ourse	Outco	mes					
CO1										-			ight pro s topics.		d enable
CO2						-	_	ven bu		text dr	awn fro	om and	origina	l source	and be
CO3		ipate i		ck inte	rviews	s and 1	earn th	ne nuai	nces of	f doing	compai	ny resea	arch in o	order to	prepare
CO4	Practi	ice the	etiqu	ette of	a grou	ıp disc	ussion	throu	gh pra	ctice se	ssions.				
CO5	Imbibe the knowledge of effective speaking and presentation required for various business context using power point presentations.														ontexts,
					(CO-PC) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	-	-	-	-	-	-	2	2	3	2
CO2	3	3	3	3	3	-	-	-	-	-	-	1	1	2	1
CO3	3	3	3	3	3	-	-	-	-	-	-	1	1	2	1
CO4	3	3	2	3	2	-	-	-	-	-	-	1	1	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	-	1	1	1
	'3'High				'2' Mo	oderate	2		'1'	Low	I	٠.	-' No C	orrelation	on

Semester: 2	nd		Subj using		me: P	rogran	nming	for Pr	oblem	Solvin	g				
							C	ourse	Outco	mes					
CO1	Desig	n simpl	le algo	rithms	for ari	thmetic	and lo	ogical p	roblen	1.					
CO2	Imple	ment th	ne algo	rithms	to C p	rogram	s using	g variou	is cont	rol struc	ture.				
CO3	Test a	nd exe	cute p	rogran	ns usin	g funct	ion, ar	ray and	string	manipu	lation.				
CO4	Apply	ly memory allocation using pointers and structures for dynamic data structures. dle data storage in disk using file and storage class specifiers.													
CO5	Handl	andle data storage in disk using file and storage class specifiers.													
					(CO-PC) Map	ping					CO-PS	SO Map	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	-	-	-	-	-	-	3	3	2
CO2	3	3	3	3	3	1	-	-	-	-	-	-	2	3	2
CO3	2	3	2	3	3	1	-	-	-	-	-	-	2	2	1
CO4	1	3	1	3	2	1	-	-	-	-	-	-	1	2	1
CO5	1	3	1	3	1	-	-	-	-	-	-	-	1	1	1
•	'3'High				'2' Mo	derate	2		'1'	Low		٠.	' No C	orrelatio	on

Semester: 2	nd		Subj	ect Na	me: E	Ingine	ering F	Physics	s Lab						
			I				C	ourse	Outco	mes		L			
CO1	Know	the ac	ccurac	ey and	precis	ion in	measu	ıremen	ıt						
CO2				ulate Y anism	_	's mod	ulus, r	igidity	modu	lus of a	wire an	ıd too u	ndersta	nd the	concept
CO3	Deter														
CO4	To ex	experiment with wave nature of light in diffraction through a grating and Newton's rings. Show the variation of I ~V of PN junction and BJT.													
CO5	To kn	know the variation of I~V of PN junction and BJT.													
					(CO-PC) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	-	-	-	-	-	-	3	3	2
CO2	1	1	1	2	1	1	-	-	-	-	-	-	2	2	1
CO3	2	2	2	2	1	0	_	-	_	_	-	-	2	2	1
CO4	1	1	1	2	1	1	-	-	-	-	-	-	1	1	0
CO5	3	3	2	2	0	0	-	-	-	-	-	-	1	1	0
6	'3'High				'2' Mo	oderate	2		'1'	Low	ı	٠.	' No C	orrelatio	on

Semester:	2 nd		Subj	ect Na	me: E	Basic E	lectric	al Eng	ineeri	ng Lab					
			<u> </u>				C	ourse	Outco	mes					
CO1	-							Nortoi l probl		nevenin	s, and	Superp	osition	theorer	ns) and
CO2	_								-	time-fi	_			ristics o	of fuses,
CO3						-				cal devi		h as flu	orescen	t lamps	, single-
CO4		nalyse series R-L-C circuits excited by AC supply to determine current, voltage, power, and power etor, and evaluate the results experimentally. emonstrate knowledge of house wiring, electrical safety rules, and grounding techniques, including													
CO5		factor, and evaluate the results experimentally. Demonstrate knowledge of house wiring, electrical safety rules, and grounding techniques, including the measurement of earth resistance using a megger.													
					(CO-PC) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	2	2	-	3	2	-	2	3	3	2
CO2	3	2	2	2	2	2	2	-	3	2	-	2	3	2	2
CO3	2	1	1	1	2	1	1	-	3	2	-	1	3	2	1
CO4	1	1	1	1	1	1	1	-	2	1	-	1	3	2	1
CO5	1	1	1	1	1	1	1	-	2	1	-	1	3	2	1
	'3'High	<u>l</u>	1		'2' Mo	oderate	2		'1'	Low	I	٠.	-' No C	orrelation	on

Semester: 2	2nd		Subj	ect Na	me: E	Basics	of Med	chanic	al Eng	ineering	g Lab				
			ı				C	ourse	Outco	mes		<u>I</u>			
CO1	Unde	rstand	differ	ent co	mpone	ents an	d its fi	unction	n of an	autom	obile.				
CO2	Unde	rstand	differ	ent typ	pes of	boilers	s and i	ts cons	struction	on.					
CO3	Unde	rstand	the pi	rinciple	e of va	pour c	compre	ession	refrige	eration	system.				
CO4	Unde	rstand	the di	fferen	t types	of hy	draulio	turbii	ne and	pump a	and its	construc	ction.		
CO5	Unde	Understand principle and working of different types of gear, clutch.													
					(CO-PO) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	-	-	-	3	3	2	-	3	2	-
CO2	2	2	2	2	2	-	-	-	3	3	2	-	3	2	-
CO3	2	1	2	1	1	-	-	-	3	3	2	-	2	2	-
CO4	1	1	1	1	1	-	-	-	3	2	1	-	2	1	-
CO5	1	1	1	1	1	-	-	-	2	2	1	-	2	1	-
	'3'High	1	1		'2' Mo	derate	2		'1'	Low	L	٠.	' No C	orrelatio	on

Semester:	2 nd		Subj	ect Na	me: V	Vorksł	op Pra	actice								
							C	ourse	Outco	mes		<u> </u>				
CO1	Use v	arious	fittin	g tools	s and a	ble to	perfor	m fitti	ng ope	eration.						
CO2	Unde	rstand	princ	iple of	gas w	elding	and a	ble to	perfor	m gas v	velding	operati	on.			
CO3	Unde	rstand	princ	iple of	arc w	elding	and al	ole to p	perfori	m arc w	elding	operation	on.			
CO4	Unde lathe.															
CO5		Understand different parts of a shaping and milling machine and able to perform shaping and milling peration.														
					(CO-PC) Map	ping					CO-PS	SO Map	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	2	3	2	3	2	2	-	3	3	-	3	3	2	3	
CO2	2	2	3	2	2	2	2	-	3	3	-	3	3	2	3	
CO3	2	2	2	1	2	2	1	-	3	3	-	3	2	2	3	
CO4	2	2	3	2	2	1	2	-	3	2	-	2	2	1	3	
CO5	2	1	2	1	3	1	1	-	2	2	-	2	2	1	3	

Semester: 2	nd			ect Na g C Lal		rograr	nming	for Pr	oblem	Solvin	g				
							C	ourse	Outco	mes					
CO1	Desig	n algo	rithm	s using	g pseud	docode	and f	lowcha	arts to	represe	nt the lo	ogical se	equence	e of open	rations.
CO2	-	orehen output			•	, data	types	(integ	gers, f	loats, c	haracte	rs), var	riables,	operato	ors, and
CO3	Creat	e and i	ıtilize	user-c	defined	d funct	cions to	modu	ılarize	code, i	mprovi	ng reada	ability a	ınd reus	ability.
CO4	Perfo	erform operations like searching, sorting, and manipulation on arrays.													
CO5	Understand the concept of pointers, their usage to access memory directly and manipulate deficiently.														ate data
					(CO-PO) Map	ping					CO-PS	SO Map	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	_	-	2	-	-	-	_	-	2	3	2	1
CO2	2	3	3	-	-	2	-	-	-	-	-	1	3	1	-
CO3	2	3	3	-	-	1	-	-	-	-	-	1	2	1	-
CO4	2	3	3	-	-	1	-	-	-	-	-	1	2	1	-
CO5	1	3	2	-	-	-	-	-	-	-	-	-	1	1	-
	'3'High				'2' Mo	oderate	e		'1'	Low	1	٠.	' No C	orrelatio	on

Semester:	3 rd		Subj	ect Na	me: E	ingine	ering N	Mather	natics-	-III					
			1				C	ourse	Outco	mes					
CO1				•	_					of the prution an			_	ineering	g, where
CO2	Know	abou	t inter	polatio	on. En	hance	this id	ea tow	ards n	umerica	al integ	ration.			
CO3	Solve	Initia	l valu	e Prob	lem ar	ıd Bou	ndary	value	proble	m using	g single	step ar	ıd multi	step me	thod.
CO4	Acquire knowledge about algebra of probability, random variable, probability distributions, Expectation, variance and standard deviation. Acquire knowledge about point estimation, interval of estimation, testing hypothesis, regression														
CO5	Acquire knowledge about point estimation, interval of estimation, testing hypothesis, regression analysis and statistical quality control.														
					(CO-PC) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	-	-	-	-	-	-	-	-	2	2	-
CO2	2	2	2	2	-	-	-	-	-	-	-	-	1	2	-
CO3	2	2	2	2	-	-	-	-	-	-	-	-	2	2	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-	2	2	-
CO5	2	2	2	2	-	-	-	-	-	-	-	-	2	2	-
	'3'High	1			'2' Mo	oderate	2		'1'	Low	1	٤.	-' No C	orrelation	on

Semester:	3 rd		Subj	ect Na	me: D	ata St	ructure	e using	gС							
			ı				C	ourse	Outco	mes						
CO1	Analy	se per	forma	nce of	algor	ithms	and im	pleme	nt var	ious op	erations	on arra	ay and s	sparse n	natrix.	
CO2	Apply	y the b	asic o	peration	ons of	stacks	and q	ueues	to solv	e real v	vorld pi	oblems	S			
CO3	Imple	ement o	differe	ent typ	es of 1	inked	list op	eration	ns and	their ap	plication	ons				
CO4	Repre	esent d	ata us	ing tre	es & g	graphs	to use	them	in vari	ous rea	life ap	plicatio	ns.			
CO5	Analy	Analyse various sorting algorithms and explore different hashing techniques														
					(CO-PC) Map	ping					CO-PS	O Map	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	2	3	-	-	-	2	2	-	2	3	3	2	
CO2	3	3	3	2	3	-	-	-	2	2	-	2	3	3	2	
CO3	3	3	3	2	3	-	-	-	2	2	-	2	3	3	3	
CO4	3	3	3	3	3	-	-	-	2	2	-	3	3	3	3	
CO5	3	3	3	2	3	-	-	-	2	2	-	3	3	3	2	
	'3'High				'2' Mo	derate	2		'1'	Low	ı	•	-' No C	orrelation	on	

Semester:	3 rd		Subj	ect Na	me: C	Organiz	zationa	ıl Beha	viour							
			l				C	ourse	Outco	mes						
CO1	in the	organiz	zation.	-	·		-							havior o		
CO2		Demonstrate the applicability of analyzing the complexities associated with management of individual behavior in the organization. Analyze the complexities associated with management of the group behavior in the organization. Demonstrate how the organizational behavior can integrate in understanding the motivation behind behavior of people in the organization. Analyse the various stressors and identifying the various ways to manage it. Assessing various ways and methods for adopting to the organizational policies and strategies.													ıdividual	
CO3	Analy															
CO4	of peo														behavior	
CO5	Analy															
CO6	Asses															
					(CO-PC) Map	ping					CO-PS	O Map	ipping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	_	_	-	_	-	2	1	2	2	2	1	-	-	1	
CO2	-	-	-	_	-	-	2	2	2	1	1	1	-	-	1	
CO3	-	-	-	-	-	-	1	2	1	2	1	2	-	-	1	
CO4	-	-	-	-	-	-	1	2	1	1	1	2	-	-	1	
CO5	-	-	-	-	-	-	2	1	1	1	1	2	-	-	1	
CO5	-	-	-	-	-	-	1	1	1	1	1	1	-	-	1	
	'3'High	l	1		'2' Moderate '1' Low '-' No Correlation								on			

Semester: 3	rd		Subj	ect Na	me: A	nalog	Electr	onics	Circui	t					
			<u> </u>				C	ourse	Outco	mes					
CO1		rstand tability		nporta	nce of	BJT b	oiasing	g for st	able c	ircuit o	peration	n and le	arn me	thods to	ensure
CO2	Field	Effect	Tran	sistors	(JFE	T and	MOS	FET) a	and sti	udents	will gai	n found		knowl	types of edge of
СОЗ	design	n effic	ient a	mplifi	er circ	uits an	nd stud	lents v	vill ana	alyse th	e impa	et of loa	_	tance (I	analyse, RL) and
CO4	behav		or vari	ous ap	plicati	ions an	nd desi								op-amp
CO5	freque	ency s	tabili	ty in	comm	unicat	ion sy	stems	and o	enhance	their	proble		ng abil	ir high- ities by
					(CO-PC) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	1	-	-	-	1	1	2	2	3	2	3
CO2	3	3	2	2	3	-	-	-	-	1	1	3	3	3	3
CO3	3	3	3	3	2	-	-	-	-	1	2	2	3	3	3
CO4	3	3	3	3	2	-	-	1	1	2	2	3	3	2	3
CO5	3	3	3	3	2	-	-	1	1	2	3	3	3	2	3
	3'High	1	1		'2' Mo	derate	2		'1'	Low		٠.	-' No C	orrelation	on

Semester: 3	3 rd		Subj	ect Na	me: D	Digital	Syster	n Desi	gn						
							C	ourse	Outco	mes					
CO1	Under	stand f	undan	nental d	ligital o	concep	ts, logi	c gates	, numb	er systei	ns, and	logic far	nilies.		
CO2	Analy	se and	simpli	fy com	binatio	nal log	gic circ	uits usi	ng Boo	olean alg	gebra, K	-maps, a	ınd logic	compo	nents
CO3	Design	n seque	ential l	ogic ci	rcuits u	using fl	ip-flop	s, FSM	Is, shift	t register	rs, and c	ounters.			
CO4	Explo	xplore programmable logic devices, semiconductor memories, and their applications.													
CO5	Devel	op and	imple	ment d	igital c	ircuits	using V	VHDL	with di	ifferent 1	modellir	ng styles	•		
	CO-PO Mapping CO-PSO Map													ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	-	-	-	1	1	-	2	3	2	2
CO2	3	3	3	2	3	-	-	-	1	2	-	2	3	2	2
CO3	3	3	3	3	3	-	-	-	1	1	-	3	3	3	3
CO4	3	3	3	2	3	-	-	-	2	2	-	3	3	3	3
CO5	3	3	3	2	3	-	-	-	2	2	-	3	3	3	3
	'3'High	1			'2' Mo	oderate	÷		'1'	Low	<u> </u>	٠.	' No C	orrelatio	on

Semester: 3	rd		Subj	ect Na	me: U	Jnivers	sal Hu	man V	alues						
							C	ourse	Outco	mes					
CO1	Awar	e of the	nemse	elves, a	and th	eir sur	round	lings (family	, societ	ty, natu	re).			
CO2		come more responsible in life, and in handling problems with sustainable solutions, while eping human relationships and human nature in mind.													
CO3	Have	we better critical and analytical ability and sense of living in harmony.													
CO4		Become sensitive to their commitment towards what they have understood (human values, human relationship and human society). Apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.													alues,
CO5	1														-
					(CO-PO) Map	ping					CO-PS	SO Mar	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	1	3	3	2	2	2	1	3	2	1	2
CO2	2	3	2	2	1	3	3	3	2	2	2	3	2	2	3
CO3	2	3	2	3	2	3	3	3	2	3	2	3	2	3	3
CO4	1	2	2	2	2	3	3	3	3	3	2	3	2	2	3
CO5	3	2	2	3	2	3	3	2	3	3	3	3	3	3	3
•	3'High	l	1		'2' Mo	oderate			'1'	Low		٠-	' No C	orrelation	on

Semester: 3	3 rd		Subj	ect Na	me: E	nviror	menta	ıl Scie	nce						
			I				C	ourse	Outco	mes					
CO1		rate econatilit	_		_						mmuni	cation 6	enginee	ring, pro	omoting
CO2	_	eering	-				-			_					nication ectronic
CO3	engin	Integrate water and wastewater treatment knowledge with electronics and communication engineering, fostering sustainable industrial practices, smart water management, and eco-friendly innovation in ECE applications. Integrate waste management knowledge with electronics and communication engineering, fostering sustainable design practices, e-waste management solutions, and ethical engineering practices that reduce environmental impact.													
CO4	sustai														\sim
CO5	staten engin	nents	(EIS)	and motin	enviro g sus	onmen stainab	tal lav le en	ws in	the c	context	of ele	ctronic	s and	commu	impact nication ethical
					(CO-PC) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2	1	1	3	3	1	2	2	2	2	3	3
CO2	2	2	3	2	1	1	3	3	2	2	2	2	3	3	3
CO3	2	2	3	2	1	1	3	3	1	2	2	2	2	3	3
CO4	2	2	3	2	1	1	3	3	2	2	2	2	3	3	3
CO5	2	2	3	2	1	1	3	3	2	2	3	3	2	3	3
	'3'High	<u>l</u>	1		'2' Mo	derate	-		'1'	Low	1	٠.	' No C	orrelation	on

Semester: 3	3 rd		Subj	ect Na	me: A	nalog	Electr	onics	Circui	t Lab					
							C	ourse	Outco	mes					
CO1	Desig	n, assei	nble a	nd test	BJT b	iasing o	circuits	•							
CO2	Analy	Analyse the Dc and Ac performance of BJT and FET.													
CO3	Under	Understand the frequency response of single & multi-stage BJT and compare the results. Study operational amplifier and its various applications.													
CO4	Study														
CO5	Analy	se and	design	ı variot	ıs wave	e shapi	ng circ	uits.							
		CO-PO Mapping CO-PSO Mapping													ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	1	1	-	-	2	2	1	3	2	2
CO2	3	3	2	3	2	1	1	-	1	1	2	1	3	2	2
CO3	3	3	2	3	3	1	2	-	1	1	2	2	3	2	2
CO4	3	3	3	3	3	1	2	-	-	2	1	2	3	1	1
CO5	3	2	2	3	2	1	1	-	-	1	1	1	3	2	2
	'3'High	1	,		'2' Mo	oderate	è		'1'	Low	ı	٠.	-' No C	orrelation	on

Semester: 3	3 rd		Subj	ect Na	me: D	Digital	Syster	n Desi	gn Lal)					
							C	ourse	Outco	mes					
CO1	Test a	and im	pleme	ent bas	ic logi	c gates	s, univ	ersal g	gates, a	and con	binatio	nal circ	uits.		
CO2	Desig	n, sim	ulate,	and te	est mul	tiplex	ers, de	-multi	plexer	s, and c	ode cor	verters			
CO3	Const	truct a	nd inv	estigat	te the	operati	ion of	flip-flo	ops, co	ounters,	and shi	ft regis	ters.		
CO4	Deve	evelop and test arithmetic circuits, including adders, subtractors, and multipliers. imulate and implement digital circuits using VHDL for real-time applications.													
CO5	Simu	late an	d imp	lemen	t digita	al circi	uits us	ing VI	HDL fo	or real-t	ime apı	plication	ns.		
	CO-PO Mapping CO-PSO Map													pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	-	-	-	1	1	-	2	3	2	2
CO2	3	3	3	2	3	-	-	-	1	1	-	2	3	2	2
CO3	3	3	3	3	3	-	-	-	1	1	-	3	3	3	3
CO4	3	3	3	2	3	-	-	-	2	2	-	3	3	3	3
CO5	3	3	3	2	3	-	-	-	2	2	-	3	3	3	3
	'3'High	1			'2' Mo	oderate	÷		'1'	Low	<u> </u>	٠.	·' No C	orrelation	on

Semester: 3	3 rd		Subj	Subject Name: Data Structure using C Lab												
			ı				C	ourse	Outco	mes						
CO1	Impl	ement	array	operat	tions to	solve	probl	ems								
CO2	Unde	Understand stack operations using programming														
CO3	Imple	Implement of queue and its operations														
CO4	Apply	Apply liked list to solve problems														
CO5	Apply	y tree a	and gr	aph co	ncept	to des	ign the	mode	el							
					(CO-PC) Map	ping					CO-PS	O Mapping		
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	2	3	-	-	-	1	1	-	2	3	3	2	
CO2	3	3	2	2	3	-	-	-	1	1	-	2	3	3	2	
CO3	3	3	2	2	3	-	-	-	1	1	-	2	3	3	3	
CO4	3	3	3	2	3	-	-	-	2	2	-	3	3	3	3	
CO5	3	3	3	3	3	-	-	-	2	2	-	3	3	3	3	
	'3'High '2' Moderate '1' Low '-' No Correlation												on			

Semester: 3	3rd		Subj	ect Na	me: E	mploy	ability	/ Skill	-I						
			l				C	ourse	Outco	mes		I			
CO1	Demo	onstrat	e prof	icienc	y in gr	amma	r and ı	isage.							
CO2	Diffe	rentiat	e betw	veen v	arious	types	of Ver	bs An	d their	function	ons.				
CO3	Enhai	nce rea	ding	and co	mpreh	ensior	skills	j.							
CO4	Impro	Improve writing skills. Strengthen sentence construction and voice modulation													
CO5	Stren	Strengthen sentence construction and voice modulation.													
					(CO-PC) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	3	-	-	-	-	-	-	1	3	-	-
CO2	3	3	2	2	2	-	-	-	-	-	-	1	2	-	-
CO3	3	3	1	2	2	-	-	-	-	-	-	1	2	-	-
CO4	3	3	1	1	1	-	-	-	-	-	-	-	2	-	-
CO5	3	2	1	1	1	-	-	-	-	-	-	-	2	-	-
	'3'High	1		'2' Mo	derate	2		'1'	Low	1	٠.	-' No C	orrelatio	on	

Semester:	4 th		Subj	ect Na	me: E	lectro	magne	tic Th	eory							
							C	ourse	Outco	mes		I				
CO1	Expla	in vario	ous co	ordinat	e syste	m, elec	trostati	ic field	s and n	nagneto	static fie	elds.				
CO2	Descr	ibe tim	e-vary	ing fiel	lds and	Maxw	ell's ed	quation	s on el	ectroma	gnetics.					
CO3	Under	stand a	bout v	what is	field a	nd visu	alize th	ne way	they va	ary.						
CO4	Expla	explain electromagnetic wave propagation through dielectrics, space, and conductors. In allyse the behaviour of transmission line and explain their applications.														
CO5	Analy	Analyse the behaviour of transmission line and explain their applications.														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	1	1	2	-	-	-	3	1	-	2	2	2	1	
CO2	3	3	2	3	2	-	-	1	-	2	1	2	3	2	2	
CO3	3	2	2	2	2	1	1	-	1	2	-	3	2	3	1	
CO4	3	2	3	2	3	1	2	-	1	1	1	3	3	2	2	
CO5	3	3	3	2	3	-	2	1	2	3	2	3	2.5	1	3	
	'3'High	1			'2' Mo	oderate	÷		'1'	Low		٠.	' No C	orrelation	on	

Semester:	4 th		Subj	ect Na	me: E	Ingine	ering I	Econor	nics ar	nd Cost	ing				
							C	ourse	Outco	mes					
CO1	Evalu	ate the	econo	mic the	eories, o	cost co	ncepts	and pri	cing po	olicies.					
CO2	Under	stand t	he mea	asures	of natio	onal inc	come, t	he func	ctions o	of banks	and con	cepts of	globaliz	zation.	
CO3	Apply	the co	ncepts	of fina	ıncial n	nanage	ment fo	or proje	ect appi	raisal.					
CO4	Under	stand a	ccoun	ting sy	stems a	ınd ana	lyse fin	nancial	statem	ents usi	ng ratio	analysis			
CO5	replac	derstand the impact of inflation, taxation, depreciation. Financial planning, economic basis for placement, project scheduling, and legal and regulatory issues are introduced and applied to economic vestment and project-management problems.													
CO6	Deterr	Determine the accurate project cost estimates and plan future activities.													
					(CO-PO) Map	ping					CO-PS	SO Maj	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	2	1	2	2	2	1	-	-	1
CO2	-	-	-	-	-	-	2	2	2	1	1	1	-	-	1
CO3	-	-	-	-	-	-	1	2	1	2	1	2	-	-	1
CO4	-	-	-	-	-	-	1	2	1	1	1	2	-	-	1
CO5	-	-	-	-	-	-	2	1	1	1	1	2	-	-	1
CO6	-	-	-	-	-	-	1	1	1	1	1	1	-	-	1
	'3'High	<u>l</u>	l		'2' Mo	oderate	<u> </u>		'1'	Low	l	•	-' No C	orrelati	on

Semester:	4 th		Subj	ect Na	me: N	/licrop	rocess	or and	Micro	ocontrol	ler				
			<u> </u>				C	ourse	Outco	mes					
CO1								ors like gram a			er organ	nizations	, Instruc	ctions wi	th
CO2									_	ent mem modes o	•	_	gister org	ganizatio	ns,
CO3	Apply	knowl	ledge (of Intel	8086 I	nstruct	ion set	for pro	gramn	ning the	micropi	cocessor	•		
CO4		Analyse different functions of the 8051 microcontrollers like memory interfacing and interrupt, timer and serial programming. Create solutions for real life applications by interfacing of peripherals like Intel 8259, Intel 8237, Intel 8251,													
CO5		Create solutions for real life applications by interfacing of peripherals like Intel 8259, Intel 8237, Intel 8251, Intel 8254 with the microprocessor and microcontrollers.													
					(CO-PO) Map	ping					CO-PS	O Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	-	-	-	-	-	-	2	3	3	2
CO2	3	3	2	2	3	-	-	-	-	-	-	2	3	3	2
CO3	3	3	3	2	3	-	-	-	-	-	-	2	3	3	2
CO4	3	3	2	2	3	-	-	-	-	-	-	2	3	3	3
CO5	3	3	3	3	3	2	1	2	2	2	2	3	3	3	3
	'3'High	l			'2' Mo	oderate	9		'1'	Low	ı	٠.	' No C	orrelation	on

Semester: 4	4 th		Subj	ect Na	me: D	Digital	Signal	Proce	ssing							
							C	ourse	Outco	mes						
CO1	Expla	in the	stabil	ity and	d causa	ality of	the L	TI sys	tems u	sing Z-	Transfo	orm.				
CO2	Analy	yse dis	crete	signals	& sys	stems	using I	OFT te	chniq	ue.						
CO3	Reali	ze diff	erent	structu	ires of	FIR a	nd IIR	discre	te tim	e syster	ns.					
CO4	Desig	Design IIR and FIR filters using various techniques. Implementing some real time signal processing application using MATLAB.														
CO5	Imple	mplementing some real time signal processing application using MATLAB.														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	2	2	2	1	1	1	1	1	3	3	2	2	
CO2	3	3	2	3	3	2	1	1	1	1	1	3	3	3	2	
CO3	2	2	3	1	1	2	2	2	3	3	3	2	2	1	2	
CO4	3	3	3	3	3	3	2	2	2	1	1	3	3	3	2	
CO5	3	3	2	2	3	3	3	2	1	1	1	3	3	3	3	
	'3'High					oderate	2		'1'	Low	I	٠.	·' No C	orrelatio	on	

Semester:	4 th		Subj	ect Na	me: I	ntrodu	ction t	o Mac	hine L	earning	Ţ,				
							C	ourse	Outco	mes					
CO1		n stati							applic	able in	signal	proces	sing, a	utomati	on, and
CO2															
CO3		Apply machine learning models in pattern recognition, automation, and intelligent systems within ectronics engineering. dvanced data analysis skills crucial for AI-driven electronics, automation, and intelligent systems.													
CO4	Adva	dvanced data analysis skills crucial for AI-driven electronics, automation, and intelligent systems.													
CO5	Integr	Integrate AI-driven learning models into real-world electronics and automation systems.													
					(CO-PC) Map	ping					CO-PS	SO Mar	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	3	3	2	1	2	2	1	3	3	3	3
CO2	3	3	3	3	3	3	2	2	3	3	2	3	3	3	3
CO3	3	3	3	3	3	3	2	2	3	3	2	3	3	3	3
CO4	3	3	3	3	3	3	2	1	2	2	2	3	3	3	3
CO5	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3
	'3'High	1	1		'2' Mo	derate	2		'1'	Low	<u> </u>	٠.	-' No C	orrelation	on

Semester: 4	th		Subj	ect Na	me: C	OPs u	ising J	AVA								
			I				C	ourse	Outco	mes						
CO1	syster		lelling	and i	_	_		-	_		•		_	_	ams for ructors,	
CO2	metho		rriding	g, and	interfa	ices, w	hile e	ffective	ely im		_	-			ritance, iques to	
CO3	conce	nonstrate proficiency in handling file input/output operations, implement multithreading cepts using the Thread class and runnable interface, and apply synchronization techniques for ctive inter-thread communication in concurrent programming. nonstrate proficiency in string manipulation techniques, effectively utilize different string dling classes, understand the lifecycle of applets, and implement event handling using the														
CO4	handl	nonstrate proficiency in string manipulation techniques, effectively utilize different string														
CO5	event	•	n prog		-			`		_	-	•		-	egrating eractive	
					(CO-PC) Map	ping					CO-PS	SO Map	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	2	2	3	1	1	1	2	2	2	3	3	2	2	
CO2	3	3	2	2	3	1	1	2	2	2	2	3	3	3	2	
CO3	3	3	2	3	3	1	1	2	2	2	2	3	3	3	3	
CO4	2	2	2	2	3	1	1	2	2	3	2	3	3	2	2	
CO5	3	2	3	3	3	2	2	2	3	3	3	3	3	3	3	
6	3'High													orrelatio	on	

Semester:	4 th		Subj	ect Na	me: C	Constit	ution o	of India	a							
							C	ourse	Outco	mes						
CO1	Prean		undar	nental	Right	s, Fun	damer	ıtal Dı						*	ling the	
CO2	the U	nion a	and th	e Stat	es, an	d the	compo	sition	, powe	ers, and	functi	ons of	the Un	ion Leg	etween islature d Prime	
CO3				-									_	_	islature	
CO4	Emer Freed	Explain the amendment process of the Indian Constitution, the emergency provisions (National Emergency, President's Rule, Financial Emergency), and the scope of Fundamental Rights (Equality, Freedom under Article 19, and Right to Life and Personal Liberty under Article 21). They will also evaluate the constitutional scheme of Local Self-Government in India. Analyse the structure, jurisdiction, and functions of the Indian Judicial System, including the														
CO5	Supre		ourt a	nd Hig	gh Cou	ırts. T	hey w	ill also	evalı	ate the			-		ling the judicial	
					(CO-PC) Map	ping					CO-PS	SO Map	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	3	2	2	2	3	1	3	2	2	2	3	2	2	2	
CO2	2	3	2	2	2	3	1	3	2	2	2	3	2	2	2	
CO3	2	3	2	2	2	3	1	3	2	2	2	3	2	2	2	
CO4	2	3	2	2	2	3	1	3	2	2	2	3	2	2	2	
CO5	2	3	2	2	2	3	1	3	2	2	2	3	2	2	2	
	'3'High	1	1		'2' Mo	derate	2		'1'	Low	ı	٠.	-' No C	orrelation	on	

Semester:	4 th		Subj	ect Na	me: N	/licrop	rocess	or and	Micro	control	ler Lab					
			<u> </u>				C	ourse	Outco	mes		1				
CO1		rstand ocontro				embly	langua	ige pro	gramn	ning usi	ng Micr	oproces	sor and			
CO2		op and	11 2		-	nguage	progra	ams us	ing loc	p, branc	ch, arith	metic, l	ogical, s	shift,rota	te, array	
CO3		op and nce of	•		t asser	nbly la	nguage	e progr	ams lil	ke findii	ng large	st/small	est num	bers, che	eck	
CO4		Develop and implement assembly language programs like finding even/ odd and positive/ negative number numbers. Develop and implement assembly language programs for interfacing peripheral like 8255, and D/A														
CO5		Develop and implement assembly language programs for interfacing peripheral like 8255, and D/A converter, stepper motor controller, and keyboard with display interface using 8279.														
					(CO-PO) Map	ping					CO-PS	SO Mar	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	2	-	2	-	-	-	-	-	-	2	3	2	2	
CO2	3	3	3	2	3	-	-	-	-	-	-	2	3	3	2	
CO3	3	3	3	2	3	-	-	-	-	-	-	2	3	3	2	
CO4	3	3	2	2	3	-	-	-	-	-	-	2	3	3	2	
CO5	3	3	3	3	3	2	-	-	2	2	2	3	3	3	3	
	'3'High	1			'2' Mo	derate	2		'1'	Low		•	-' No C	orrelation	on	

Semester:	4 th		Subj	ect Na	me: D	Digital	Signal	Proce	essing	Lab					
			ı				C	ourse	Outco	mes		<u>I</u>			
CO1	Expla	in the g	generat	tion of	various	s eleme	entary s	signals	in MA	TLAB.					
CO2	Analy	se basi	c signa	al proce	essing	operati	ons lik	e convo	olution	, correla	tion etc.				
CO3	Analy	se the s	spectru	ım of d	liscrete	time s	ignals	using D	DFT.						
CO4	Imple	ment v	arious	efficie	nt com	putatio	n techr	nique u	sing D	ITFFT a	nd DIFI	FFT algo	orithm.		
CO5	Desig	Design FIR and IIR filters using various techniques. CO-PO Mapping CO-PSO Mapping													
					(CO-PC) Map	ping					CO-PS	SO Map	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	3	3	1	1	1	3	1	1	3	3	2
CO2	3	3	2	2	3	2	1	1	1	2	1	2	3	3	2
CO3	3	3	3	2	3	2	1	1	1	2	1	2	3	3	2
CO4	3	3	3	2	3	3	1	1	1	2	1	2	3	3	3
CO5	3	3	3	3	3	2	1	1	1	2	1	2	3	3	3
	'3'High				'2' Mo	oderate	2		'1'	Low	I	٠.	·' No C	orrelatio	on

Semester:	4 th		Subj	ect Na	me: N	Iini Pr	oject-	I							
			<u> </u>				C	ourse	Outco	mes					
CO1		onstrat ole solu		ability	to ide	ntify r	eal-wo	orld pr	oblem	s and a	nalyse	require	ments f	or devel	loping a
CO2				al cond	-		ramm	ing, ci	rcuit d	esign, o	or embe	dded sy	stems t	o imple	ment an
CO3	Desig	gn, dev	elop,	and tes	st a pro	ototyp	e/mod	el usin	ıg appı	opriate	tools, t	echniqu	ies, and	techno	logies.
CO4		Evaluate system performance using metrics such as speed, accuracy, efficiency, and propose improvements where necessary. Effectively communicate the project's objectives, methodology, results, and findings through well-													
CO5	Effectively communicate the project's objectives, methodology, results, and findings through well structured reports and presentations. CO-PO Mapping CO-PSO Mapping														
				1							1	1			
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1	2	1	1	2	2	2	3	3	2	2
CO2	3	2	3	2	3	1	1	1	2	2	2	3	3	3	3
CO3	3	2	3	3	3	1	2	1	2	2	3	3	3	2	3
CO4	3	3	2	3	3	1	2	1	2	2	3	3	3	3	3
CO5	3	1	1	1	1	1	1	1	3	3	3	3	2	3	2
	'3'High	1			'2' Mo	oderate	2		'1'	Low	1	٠,	-' No C	orrelati	on

Semester:	4 th		Subj	ect Na	me: E	mploy	ability	/ Skill	-II						
							C	ourse	Outco	mes		l			
CO1	Devel	op plac	ement	enable	ed prog	rammi	ng skil	l accor	ding to	industry	y pattern	1.			
CO2	Devel	op qua	ntitativ	ve and	reasoni	ng skil	l for re	cruitm	ent.						
CO3	Devel	op cod	ing ski	ill for c	ampus	recruit	ment.								
CO4	Devel	Develop techniques to solve Q and LR problems with in stipulated time. Develop logical reasoning skills.													
CO5	Devel	Develop logical reasoning skills. CO-PO Mapping CO-PSO Mapping													
					(CO-PC) Map	ping					CO-PS	SO Map	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	2	3	3	3	3	-	3	3	3	3
CO2	3	3	3	3	1	1	3	2	2	3	-	3	3	3	3
CO3	3	2	2	2	1	1	3	2	2	3	-	2	3	3	3
CO4	2	2	2	1	1	1	2	2	2	1	-	2	2	3	3
CO5	2	1	1	1	-	-	1	1	2	1	-	1	2	2	3
	'3'High	1		'2' Mo	oderate	2		'1'	Low	L	٠.	-' No C	orrelation	on	

Semester:	5 th		Subj	ect Na	me: I	Digital	VLSI								
							C	ourse	Outco	omes					
CO1	offs in		orld a	pplicati	ions. Si	tudents	will co	mpreh				_	_	e) and the SI design	
CO2	challe	nges, t	echniq	ues rel	lated to	MOS	FET so	caling,	includ		ll-geom	etry effe		l unders nodern t	
CO3		Develop a deep understanding of MOS inverter circuits, including their design, operation, and significance in digital logic design. Develop a comprehensive understanding of design principles for high-speed CMOS logic circuits.													
CO4	Devel														
CO5	Gain knowledge of pass transistor logic, CMOS transmission gate logic, design of memory cells, fault type and fault models which enable them to design efficient logic circuits.														ult types
					(CO-PO) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	-	2	2	1	2	2	2	2	2	2
CO2	3	3	2	3	2	-	-	1	1	1	1	2	2	2	3
CO3	3	3	3	2	2	1	-	1	1	1	1	2	1	3	2
CO4	3	3	3	3	3	-	1	1	1	2	2	2	2	2	3
CO5	3	3	3	2	3	1	-	2	1	2	2	2	3	3	1
	'3'High	1	1		'2' Mo	oderate	2		'1'	Low	I	•	-' No C	orrelation	on

Semester:	5 th		Subj	ect Na	me: C	Control	Syste	m Eng	gineeri	ng					
							C	ourse	Outco	mes					
CO1								-		evelop n system			del of v	arious pl	nysical
CO2		tandard		_						eristics o	f first ar	nd secon	d-order	systems	and
CO3		fy the rency do		ls of fr	equenc	y doma	ain ana	lysis ar	nd appl	y it to d	etermine	e differe	nt types	of stabil	ity in
CO4		Differentiate between Transfer Function and State-Space approach of describing a system and understand the design of conventional controllers used in industry. Understand different types of control components and its design for reliable and efficient application in													
CO5	Understand different types of control components and its design for reliable and efficient application in industry.														
					(CO-PO) Map	ping					CO-PS	SO Mar	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	-	-	-	-	2	-	-	3	2	3
CO2	2	3	2	2	2	1	-	-	-	2	-	-	3	2	3
CO3	2	2	3	2	1	-	-	-	-	1	-	-	2	1	2
CO4	1	2	2	2	3	-	-	-	-	2	-	-	2	1	2
CO5	1	2	1	2	3	-	-	-	-	1	-	-	2	1	2
	'3'High	1	<u> </u>		'2' Mo	oderate	2		'1'	Low	1	٠,	-' No C	orrelation	on

Semester:	5 th		Subj	ect Na	me: A	nalog	and D	igital	Comm	unicati	on				
			ı				C	ourse	Outco	mes		1			
CO1	Perfo	rm spe	ectral	analys	is, and	apply	modu	lation	techni	ques in	moder	n comm	nunicati	on syste	ems.
CO2		lop a		_				analy	vsis, n	nodulat	ion tec	hnique	s, and	signal	quality
CO3		theore						impler	nentat	ion skil	lls, and	noise a	analysis	technic	ques for
CO4	Develop a deep understanding of detection theory, modulation techniques, error analysis, and the applications in real-world digital communication systems. Gain a comprehensive understanding of digital modulation, demodulation, equalization, ar														nd their
CO5	Gain a comprehensive understanding of digital modulation, demodulation, equalization, a synchronization techniques for efficient and reliable communication in modern digital systems.														ms.
					(CO-PO) Map	ping					CO-PS	SO Maj	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	3	3	2	1	1	1	2	1	3	3	3	2
CO2	3	3	2	3	3	2	1	1	1	2	2	3	3	3	3
CO3	3	3	3	3	3	3	1	2	1	2	2	3	3	3	3
CO4	3	3	3	3	3	3	2	2	2	3	2	3	3	3	3
CO5	3	3	3	3	3	3	3	2	1	2	3	3	3	3	3
	'3'High			'2' Mo	oderate	e 		'1'	Low		•	-' No C	orrelati	on	

Semester:	5 th		Subj	ect Na	me: V	Vireles	s Con	munic	cation						
							C	ourse	Outco	mes					
CO1		rstand f nunicati		_			nmunic	ation s	ystem a	and evol	ution of	differer	nt wirele	SS	
CO2		se the a				ning, p	rotocol	ls, capa	bilities	and app	olication	of vario	ous wire	less	
CO3	Comp	are dif	ferent	techno	logies	used fo	r wirel	ess con	nmunic	cation sy	stems.				
CO4	Evalu	valuate design challenges, constraints and security issues associated with Ad-hoc wireless networks.													
CO5	Analy	Analyse different multiple access techniques for wireless communication.													
					(CO-PO) Map	ping					CO-PS	SO Map	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	2	-	-	-	-	-	2	3	3	2
CO2	3	3	2	2	2	2	-	-	-	-	-	2	3	2	2
CO3	3	3	2	2	1	1	-	-	-	-	-	2	3	2	1
CO4	3	3	2	3	3	1	-	-	-	-	-	1	2	2	2
CO5	3	2	3	3	3	1	-	-	-	-	-	1	2	2	2
	'3'High	1		'2' Mo	oderate	2		'1'	Low	ı	٠.	' No C	orrelation	on	

Semester:	5 th		Subj	ect Na	me: I	ntrodu	ction t	o DBN	ЛS						
							C	ourse	Outco	mes					
CO1					epts of nanagi		•	-		ding da	ta mode	els, data	abase a	rchitecti	are, and
CO2										(ER)				norma	lization
CO3	data		relatio			-	_	•	~ /			-	-	-	retrieve es, and
CO4		xplain and implement transaction management concepts, including ACID properties, concurrency ontrol, and recovery techniques to ensure data consistency and reliability. Implement basic database security measures, such as user authentication, authorization, and access													
CO5						-		-		ser autl		ion, au	thorizat	ion, and	daccess
					(CO-PC) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	3	3	3	2	-	2	3	3	-	2	3	1	2
CO2	3	1	2	2	3	2	-	2	3	3	-	2	2	1	2
CO3	2	1	2	2	3	1	-	1	3	3	-	2	2	1	2
CO4	2	1	2	2	3	1	-	1	3	3	-	2	2	1	1
CO5	2	-	1	1	3	1	-	1	2	3	-	1	2	-	1
	'3'High	l			'2' Mo	oderate	2		'1'	Low	I	•	-' No C	orrelation	on

Semester:	5 th		Subj Tradi		me: E	ssence	e of In	dian K	nowle	edge and	d				
			ı				C	ourse	Outco	mes		1			
CO1	_				knowle r profe	_			ECE	princip	les, fos	tering i	nnovati	ion, ethi	ics, and
CO2	-							n elec		s and co	ommun	ication	technol	ogies, fo	ostering
CO3								e with		dern er	ngineeri	ng for	person	nal wel	l-being,
CO4	_	Explore and apply the essence of Indian knowledge and tradition in modern electronics and communication engineering, fostering innovation, sustainability, and ethical engineering practices													
CO5	comm	Explore and integrate India's traditional knowledge systems with modern electronics communication engineering, fostering innovation, sustainability, and ethical technolog advancements.													
		ı		1) Map		,		1	1		SO Mar	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	3	2	3	2	2	1	3	3	2	3
CO2	3	3	3	2	3	3	3	3	2	2	2	3	3	3	3
CO3	2	1	2	2	2	3	3	3	3	2	2	3	2	2	3
CO4	3	3	3	2	3	3	3	3	2	2	2	3	3	3	3
CO5	3	3	3	2	3	3	3	3	2	2	2	3	3	3	3
	'3'High	l L	1		'2' Mo	oderate	2		'1'	Low	1	٢,	-' No C	orrelation	on

Semester:	5 th		Subj	ect Na	me: I	Digital	VLSI	Lab							
			1				C	ourse	Outco	mes		1			
CO1			-	-			_	_	•	O, OR, OS logi				XOR, X	KNOR).
CO2		lop sk			nizing	and co	onnect	ing lo	gic ga	ites to	create a	worki	ng full	adder a	and half
CO3					-					ality of lection.		tiplexe	r by test	ting all 1	possible
CO4	Simu		e deco				_		•			ools (e.ş	g., Xilir	nx) to v	erify its
CO5	Gain a solid understanding of sequential circuits, Flip Flop designs, and logic optimization.														
					(CO-PO) Map	ping					CO-PS	SO Map	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	3	3	1	-	-	2	1	-	1	2	3	2
CO2	3	3	2	3	2	1	1	-	1	1	-	1	1	3	1
CO3	3	2	1	3	3	1	-	1	1	1	-	1	2	1	3
CO4	3	3	3	2	3	2	1	1	2	2	1	2	2	1	1
CO5	1	1	1	1	1	1	1	1	3	3	1	2	2	1	2
	'3'High			'2' Mo	oderate	e 		'1'	'Low		6	-' No C	orrelatio	on	

Semester:	5 th		Subj	ect Na	me: C	Control	Syste	m Eng	ineerii	ng Lab					
							C	ourse	Outco	mes					
CO1			•					otors b	•	-	g the tra	nsfer fi	unctions	s of DC	and AC
CO2			-			-			-	-	ng the fi	-	y respo	nse of l	ead and
CO3	_						_		as O	N/OFF	and Pl	D cont	rollers	in temp	perature
CO4		Demonstrate the working principles of sensors and transducers by analysing the characteristics of hermocouples, thermistors, LVDTs, and strain gauges for measurement applications. Apply bridge circuits for precise measurement of electrical parameters like resistance, inductance,													
CO5	thermocouples, thermistors, LVDTs, and strain gauges for measurement applications. Apply bridge circuits for precise measurement of electrical parameters like resistance, inductance, and capacitance, ensuring accuracy in instrumentation.														
					(CO-PC) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	3	-	-	-	2	1	1	2	3	2	3
CO2	3	3	2	3	3	-	2	-	1	1	-	2	3	3	3
CO3	3	3	3	3	3	2	2	-	2	2	1	3	3	3	3
CO4	3	3	2	3	3	1	2	-	2	2	1	3	3	2	3
CO5	3	3	2	3	3	-	2	-	1	1	-	2	3	2	3
	'3'High	l	1		'2' Mo	oderate	9		'1'	Low	I	٠.	' No C	orrelatio	on

Semester:	5 th		Subj Lab	ect Na	me: A	analog	and D	igital (Comm	nunicati	on				
			1				C	ourse	Outco	mes		L			
CO1	Under	stand	differe	nt mod	dulatio	n and c	lemod	ulation	techni	ques in	analog a	ınd digit	al comn	nunicatio	on.
CO2		-		•	-					equency insform,			-	npulse re	esponse,
CO3		evelop the ability to compare and contrast the strengths and weaknesses of various communication vstems. Inderstand error control coding techniques.													
CO4	Under	Understand error control coding techniques. Simulate the AM/FM modulation and demodulation system using MATLAB.													
CO5	Simul	ate the	AM/F	M mod	dulation	n and d	emodu	lation	system	using M	IATLAI	3.			
					(CO-PC) Map	ping					CO-PS	SO Maj	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	2	1	1	1	1	1	2	3	3	2
CO2	3	3	2	3	3	2	1	1	1	1	1	3	3	3	2
CO3	2	3	3	2	2	1	1	2	3	2	2	2	3	2	3
CO4	3	3	2	2	3	3	2	2	2	1	1	2	3	3	2
CO5	2	2	1	1	1	1	1	2	2	3	2	3	2	1	1
	'3'High	1	<u> </u>		'2' Mo	oderate)		'1'	Low	I	٠.	-' No C	orrelation	on

Semester:	5 th		Subj	ect Na	me: E	Employ	ability	Skill-	-III						
							C	ourse	Outco	mes		l			
CO1	Devel	op plac	ement	enable	ed prog	rammi	ng skil	l accor	ding to	industry	pattern	l.			
CO2	Devel	op qua	ntitativ	ve and	reasoni	ng skil	l for re	cruitm	ent.						
CO3	Devel	op cod	ing ski	ill for c	ampus	recruit	ment.								
CO4	Devel	op tech	nique	s to sol	ve Q aı	nd LR j	probler	ns with	in stip	oulated t	ime.				
CO5	Devel	Develop logical reasoning skills.													
					(CO-PC) Map	ping					CO-PS	SO Map	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	1	-	-	3	3	3	-	-	3	1	2
CO2	3	3	3	3	1	-	-	2	2	2	-	-	3	1	2
CO3	2	2	2	2	1	-	-	2	2	2	-	-	3	1	2
CO4	2	2	2	1	-	-	-	2	2	2	-	-	3	1	1
CO5	1	1	2	1	-	-	-	2	2	1	-	-	3	-	1
	'3'High	1	,		'2' Mo	derate			'1'	Low		٠.	' No C	orrelation	on

Semester:	5 th		Subj	ect Na	me: S	umme	r Inter	nship-	I						
			ı				C	ourse	Outco	mes		I			
CO1	Apply	y engir	neerin	g knov	vledge	and to	echnic	al skill	s to so	olve real	l-world	industr	y probl	ems	
CO2	Deve	lop hai	nds-oı	n expe	rience	with i	ndustr	y tools	, softv	vare, an	d mode	rn tech	nologie	S	
CO3		Enhance teamwork, leadership, and professional communication skills in a workplace environment. Understand ethical, societal, and environmental responsibilities in engineering practice. Engage in lifelong learning by analysing emerging trends and innovations in the industry.													
CO4	Unde														
CO5	Enga														
					(CO-PO) Map	ping					CO-PS	SO Map	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	2	1	1	2	3	3	3	3
CO2	3	3	3	3	3	2	2	1	1	1	2	3	3	3	3
CO3	2	2	2	2	2	3	2	3	2	2	3	3	3	3	2
CO4	2	2	2	2	2	3	3	3	2	2	2	2	3	3	2
CO5	3	3	3	3	3	2	2	2	3	3	2	3	3	3	3
	'3'High	1	1		'2' Mo	oderate	e		'1'	Low	L	٠.	-' No C	orrelation	on

Semester:	5 th		Subj	ect Na	me: N	Iini Pr	oject-	II							
							C	ourse	Outco	mes					
CO1		onstrat ole solu		ability	to ide	ntify re	eal-wo	rld pro	oblems	s and an	alyse re	equiren	nents fo	r develo	pping a
CO2	1			al cono	-		gramm	ing, ci	rcuit d	lesign, o	or embe	dded sy	ystems 1	to imple	ement
CO3	Desig	gn, dev	elop,	and tes	st a pro	ototyp	e/mod	el usin	ıg appı	opriate	tools, t	echniqu	ies, and	techno	logies.
CO4	Evaluate system performance using metrics such as speed, accuracy, efficiency, and propose improvements where necessary. Effectively communicate the project's objectives, methodology, results, and findings through well-														e
CO5	Effectively communicate the project's objectives, methodology, results, and findings through v structured reports and presentations.														
		T	T	1							1	ı		SO Maj	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1	2	1	1	2	2	2	3	3	2	2
CO2	3	2	3	2	3	1	1	1	2	2	2	3	3	3	3
CO3	3	2	3	3	3	1	2	1	2	2	3	3	3	2	3
CO4	3	3	2	3	3	1	2	1	2	2	3	3	3	3	3
CO5	3	1	1	1	1	1	1	1	3	3	3	3	2	3	2
	'3'High	1	1		'2' Mo	oderate	2		'1'	Low	1	•	-' No C	orrelati	on

Semester:	6 th		Subj	ect Na	me: I	nternet	t of Th	ings								
							C	ourse	Outco	mes						
CO1	enabli	ng tech	nolog	ies, an	d level	s, whil	e also	gaining	g insigl		lomain-s		•	nd logica lications		
CO2	utilize	e NET	CON	F-YA	NG fo	r effic	cient I	oT sy	stems		ement,	address		and M2 twork o	-	
CO3	and p															
CO4	handl	Design and develop IoT applications using Python by implementing logical programming constructs, andling data structures, and integrating file operations, modules, and packages to create efficient and scalable solutions. Understand the fundamental building blocks of IoT devices and demonstrate proficiency in														
CO5							_			Γ device ng Pyth				proficio	ency in	
					(CO-PC) Map	ping					CO-PS	SO Map	ping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	2	1	2	2	2	1	1	2	1	3	3	2	2	
CO2	3	3	2	2	3	1	1	1	1	2	2	3	3	3	2	
CO3	3	3	3	3	3	2	2	1	1	2	2	3	3	3	3	
CO4	2	2	3	2	3	1	1	1	2	3	2	3	3	3	3	
CO5	3	2	3	2	3	1	1	1	2	2	2	3	2	3	3	
	'3'High	<u>l</u>	I		'2' Mo	oderate	<u> </u>		'1'	Low	I	٠.	·' No C	orrelatio	on	

Semester: 0	6 th		Subj	ect Na	me: N	/licrow	ave ar	nd Ant	enna E	Enginee	ring				
			ı				C	ourse	Outco	mes		1			
CO1	Unde	rstand	high-	freque	ncy tra	ansmis	sion li	nes, w	ave pi	opagati	on, and	limped	ance ma	atching.	
CO2	Analy	yse wa	vegui	des, re	sonato	rs, and	d micro	owave	field	solution	ıs.				
CO3	Unde	rstand	micro	wave	compo	onents	, powe	r divid	lers, aı	nd micr	owave	oscillate	ors.		
CO4	Explo	ore ante	enna 1	adiatio	on prin	ciples	, array	desig	n, and	impeda	ince ma	tching.			
CO5	Unde	Understand the design and characteristics of various antennas.													
					(CO-PC) Map	ping					CO-PS	SO Mar	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	-	-	-	1	1	-	2	3	2	2
CO2	3	3	3	2	3	-	-	-	1	1	-	2	3	2	2
CO3	3	3	3	3	2	-	-	-	1	1	-	3	3	3	3
CO4	3	3	3	3	3	-	-	-	2	2	-	3	3	3	3
CO5	3	3	3	3	3	-	-	-	2	2	-	3	3	3	3
	'3'High	1	1		'2' Mo	oderate	2		'1'	Low	I	٠.	·' No C	orrelation	on

Semester:	6 th		Subj Prote		ime: C	Compu	ter Ne	tworki	ng and	l Intern	et				
							C	ourse	Outco	mes					
CO1					vledge nd tele				smitte	ed over	a netwo	ork, pre	paring t	hem for	deeper
CO2		lop a s	_	g foun	dation	in Da	ata Lii	nk Lay	er pro	otocols,	LAN,	and w	ireless	commu	nication
CO3		-	_				_			and tr	-	layer	protoco	ols, add	ressing,
CO4		Develop a strong understanding of application layer protocols, enabling them to work with real-world network services like web browsing, email communication, and file transfer. Gain fundamental knowledge of data transmission, networking technologies, error handling, and													
CO5					wledge astruct		ıta trar	nsmiss	ion, no	etworki	ng tech	nologie	es, erroi	r handli	ng, and
					(CO-PC) Map	ping					CO-PS	SO Map	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	2	1	1	1	2	1	3	3	3	2
CO2	3	2	2	2	3	2	1	1	1	2	2	3	3	3	2
CO3	3	3	3	2	3	3	1	2	1	2	2	3	3	3	3
CO4	3	2	3	2	3	3	2	2	2	3	2	3	3	3	3
CO5	3	3	2	2	3	3	3	2	1	2	3	3	3	3	2
	'3'High				'2' Mo	oderate	<u> </u>		'1'	Low	<u> </u>	٤.	-' No C	orrelation	on

Semester:	6 th		Subj	ect Na	me: N	Iobile	Comp	uting							
			1				C	ourse	Outco	mes					
CO1		-		lity to	-	-			diffe	rent wi	reless	commu	nicatio	n techn	ologies,
CO2	Evalu	ate the	e evol	ution f	rom V	VLL to	3G in	the co	ontext	of impi	oving v	vireless	comm	unicatio	n.
CO3	_			rs in sans, and						s and re	lated fie	elds, inc	cluding	satellite	design,
CO4	_	Explore emerging trends in wireless enterprise networks, including advancements in Bluetooth technology, pervasive computing, and adaptive web application architectures. Gain a foundation for pursuing careers in mobile network design, wireless communication, and													
CO5															
					(CO-PC) Map	ping					CO-PS	SO Map	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	-	2	-	2	1	1	2	2	3
CO2	3	3	3	3	2	2	-	2	-	1	2	2	3	3	3
CO3	3	2	2	1	3		1	-	2	3	1	1	3	1	3
CO4	2	1	3	3	2	2	1	3	3	2	1	2	2	2	2
CO5	1	3	2	2	2	2	2	2	3	3	2	1	2	2	2
	'3'High	l			'2' Mo	derate	2		'1'	Low	L	٠.	-' No C	orrelation	on

Semester:	6 th		Subj	ect Na	me: C	perati	ng Sys	stem							
							C	ourse	Outco	mes					
CO1	Devel	op a stı	ong fo	oundati	on in o	peratin	ıg syste	ems and	d their	applicat	ions in e	electroni	cs and c	omputin	g.
CO2	_	procesting sys		_		_				multi-th	reading,	and CP	U sched	uling, cr	rucial for
CO3	Build	strong	found	ation ir	n cloud	infrast	ructure	, virtua	alizatio	n, and r	eal-worl	d cloud	service	applicati	ons.
CO4		Develop technical and managerial skills for implementing and managing SaaS-based cloud solutions in real world applications. Gain technical expertise and managerial insights for ensuring security in cloud computing infrastructures.													
CO5	Gain t	Gain technical expertise and managerial insights for ensuring security in cloud computing infrastructures													
					(CO-PO) Map	ping					CO-PS	SO Maj	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	2	1	1	2	2	1	3	3	2	2
CO2	3	3	3	3	3	2	1	1	2	3	2	3	2	3	3
CO3	3	3	2	3	3	3	1	2	2	2	2	3	3	3	3
CO4	3	3	3	3	3	3	2	2	3	3	2	3	3	3	3
CO5	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3
	'3'High	1		'2' Mo	oderate)		'1'	Low	l	٠.	' No C	orrelati	on	

Semester:	6 th		Subj	ect Na	me: E	mploy	ability	/ Skill	-IV							
							Co	ourse	Outco	mes		l				
CO1	Devel	op plac	ement	enable	ed prog	rammi	ng skil	l accor	ding to	industry	y pattern	1.				
CO2	Devel	op qua	ntitativ	ve and	reasoni	ng skil	l for re	cruitm	ent.							
CO3	Devel	op cod	ing ski	ill for c	ampus	recruit	ment.									
CO4	Devel	op tech	nique	s to sol	ve Q aı	nd LR	probler	ns with	in stip	oulated t	ime.					
CO5	Devel	Develop logical reasoning skills.														
					(CO-PC) Map	ping					CO-PS	SO Map	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	3	3	-	-	2	2	3	3	3	2	2	
CO2	3	3	3	3	3	3	-	-	1	1	3	2	2	2	2	
CO3	2	3	3	2	2	3	-	-	1	1	3	2	2	2	2	
CO4	1	2	2	2	2	3	-	-	1	1	3	2	1	2	1	
CO5	1	2	2	1	2	3	-	-	-	-	3	2	1	1	1	
	'3'High	1		'2' Mo	oderate	2		'1'	Low	L	٠.	-' No C	orrelation	on		

Semester:	6 th		Subj	ect Na	me: I	nternet	t of Th	ings L	ab							
			<u> </u>				C	ourse	Outco	mes		I				
CO1	Under	stand t	he use	of diff	erent I	oT dev	ices lik	e Ardu	iino, N	odeMCU	J, and R	aspberr	y PI.			
CO2	Apply	Ardui	no pro	gramm	ing ski	ll in in	terfacii	ng LEI	Os, LCI	Os, and s	seven se	gment d	isplays.			
CO3	Apply	Ardui	no pro	gramm	ing ski	ll in in	terfacii	ng temp	peratur	e and hu	midity s	sensors.				
CO4	Apply	Apply programming skill in uploading the temperature and humidity sensors data in ThingSpeak and Blynk. Apply programming skills in python to use Raspberry PI for different applications.														
CO5	Apply															
					(CO-PO) Map	ping					CO-PS	SO Map	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	2	2	3	2	2	1	1	2	1	3	3	2	2	
CO2	3	3	3	2	3	2	2	1	2	2	2	3	3	3	3	
CO3	3	3	3	3	3	2	2	2	2	2	2	3	3	3	3	
CO4	3	3	3	3	3	2	2	1	2	2	2	3	3	3	3	
CO5	3	3	3	3	3	2	3	2	2	2	3	3	3	3	3	
	'3'High	1			'2' Mo	oderate	÷		'1'	Low		٠.	' No C	orrelation	on	

Semester:	6 th	Su	bject I	Name:	Micro	owave	and A	ntenna	ı Engi	neering	Lab				
							C	ourse	Outco	mes		1			
CO1					ferent d term			compo	nents	such as	wavegi	iides, is	solators	, circula	tors,
CO2	Calib	rate a	micro	wave t	est be	nch for	r cond	ucting	micro	wave e	xperime	ents.			
CO3	Analy	yse of	Reflex	Klys	tron T	ube an	d Gun	n diod	e char	acterist	ics.				
CO4		Inderstand and analyse Implement transmission line equations and Smith Chart calculations using MATLAB.													
CO5	Analyse the radiation pattern characteristics of antenna.														
					(CO-PC) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	-	-	-	1	1	-	2	3	2	2
CO2	3	3	3	3	3	-	-	-	1	2	-	3	3	3	3
CO3	3	3	2	2	3	-	-	-	1	1	-	2	3	3	3
CO4	3	3	3	3	3	-	-	-	2	2	-	3	3	3	3
CO5	3	3	3	3	3	-	-	-	2	2	-	3	3	3	3
	'3'High	1	1		'2' Mo	derate	2		'1'	Low	ı	٤.	-' No C	orrelati	on

Semester: (5 th		Subj	ect Na	me: S	emina	r-I								
			ı				C	ourse	Outco	mes		I			
CO1	Deve	lop the	abili	ty to re	esearch	n, anal	yze, ar	nd pres	sent te	chnical	topics 6	effectiv	ely.		
CO2	Enhai	nce ora	al and	writte	n com	munic	ation s	skills f	or tech	nical d	ocumer	ntation a	and pres	sentatio	ns.
CO3	Impro	ove cri	tical t	hinkin	g and ₁	proble	m-solv	ving al	oilities	throug	h literat	ure rev	iew and	d discus	sion.
CO4	Gain	ain experience in professional ethics, teamwork, and interdisciplinary collaboration.													
CO5	Deve	Develop lifelong learning skills by staying updated with emerging technologies and trends.													
					(CO-PC) Map	ping					CO-PS	SO Maj	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	3	2	1	_	_	2	3	2	3	2	3	2
CO2	1	2	2	2	2	1	_	_	2	3	2	3	2	3	2
CO3	2	3	2	3	2	1	_	_	2	3	2	3	2	3	2
CO4	1	2	2	2	2	2	1	3	3	3	3	2	2	2	2
CO5	2	3	2	3	2	1	1	_	2	3	2	3	3	3	2
	'3'High	1	1		'2' Mo	oderate	2		'1'	Low	ı	٠.	-' No C	orrelati	on

Semester:	6 th		Subj	ect Na	me: C	Grand \	Viva								
							C	ourse	Outco	mes					
CO1	Identi	ify a re	al-wo	orld pro	oblem	and ar	nalyse	its req	uireme	ents to p	propose	an inno	ovative	solution	1.
CO2	Deve	lop a f	unctic	nal pr	ototyp	e or m	odel u	sing a	ppropr	riate too	ls, tech	niques,	and tec	hnologi	les.
CO3	Apply	y engir	neerin	g princ	ciples	and do	main-	specifi	c knov	wledge	to desig	gn and o	ptimiz	e the pro	oject.
CO4		collaborate effectively within a team and communicate project details through reports and resentations. Lest, validate, and refine the project-based knowledge on performance analysis and feedback.													
CO5	Test,	Test, validate, and refine the project-based knowledge on performance analysis and feedback.													
					(CO-PO) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	2	1	1	2	2	2	3	3	3	2
CO2	3	2	3	2	3	1	1	1	2	2	2	3	3	3	3
CO3	3	2	3	3	3	1	2	1	2	2	3	2	3	3	3
CO4	3	3	2	3	3	1	2	1	2	2	3	3	3	3	3
CO5	2	1	2	2	2	1	1	1	3	3	3	3	2	3	3
	'3'High	1	1		'2' Mo	derate)		'1'	Low	I	٠.	-' No C	orrelation	on

Semester:	7 th		Subj	ect Na	me: E	ntrepr	eneurs	ship De	evelop	ment						
			1				C	ourse	Outco	mes						
CO1					-	_					_		ial lands s ventui	-	ostering	
CO2	mana	ge sma	all bus	sinesse		contri	-		_		-			es, set u tem, esp	-	
CO3																
CO4		Develop analytical and managerial skills to identify, prevent, and address industrial sickness while understanding the financial and policy frameworks that support business sustainability. Develop a strong foundation in industrial planning, regulatory compliance, environmental														
CO5		-		_							•	-	liance, sustain		nmental	
					(CO-PO) Map	ping					CO-PS	SO Map	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	2	3	3	2	1	1	1	2	1	3	3	3	2	
CO2	3	3	2	3	3	2	1	1	1	2	2	3	3	3	3	
CO3	3	3	3	3	3	3	1	2	1	2	2	3	3	3	3	
CO4	3	3	3	3	3	3	2	2	2	3	2	3	3	3	3	
CO5	3	3	3	3	3	3	3	2	1	2	3	3	3	3	3	
	'3'High	1		'2' Mo	oderate	<u> </u>		'1'	Low	<u> </u>	٤.	-' No C	orrelation	on		

Semester: '	7 th		Subj	ect Na	me: E	Embed	ded Sy	stem a	ınd Ap	plication	on				
			1				C	ourse	Outco	mes					
CO1	Descr	ibe the	funda	amenta	ıl build	ling blo	ocks of	a typi	cal em	bedded	system.	,			
CO2	_	in the care dev			ites of	embed	ded sys	stems a	nd the	co desig	gn appro	each for	embedd	ed hardv	vare and
CO3	Expla	in the	eleme	nts of	embed	ded ha	rdware	and th	eir des	sign prii	nciples	and dev	elopme	nt steps.	
CO4	Under	nderstand the need for an operating system and internals of RTOS based embedded firmware design. tegrate, test, and manage an embedded system development lifecycle (EDLC).													
CO5	Integr														
					(CO-PO) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	-	1	-	-	-	-	-	2	3	1	-	2
CO2	3	2	3	-	1	-	2	-	-	1	2	2	2	1	2
CO3	1	2	1	1	1	-	1	-	-	-	3	2	1	1	2
CO4	2	1	1	1	2	1	-	-	-	-	2	3	1	1	2
CO5	2	3	3	1	2	1	1	-	-	2	2	2	3	1	2
	'3'High	1		'2' Mo	oderate	2		'1'	Low	1	٠.	-' No C	orrelation	on	

Semester:	7 th		Subj	ect Na	me: D	ata Sc	ience								
			l .				C	ourse	Outco	mes					
CO1	select	•	lterin	g, ma	nipula	ting, s		-				-	-	luding 1 an int	•
CO2	visua		nd inte	erpret o	data di	stribut		-		•	•		-	to sum	
CO3	forest		le inte				_			_				es and ing, val	
CO4	Apply regression analysis and clustering techniques to real-world datasets, assess mod performance using appropriate metrics, and interpret results to make data-driven decisions.													model	
CO5		se the			acy, a	nd sec	urity ii	nplica	tions o	of data s	cience :	applicat	tions an	d evalua	ate their
					(CO-PC) Map	ping					CO-PS	SO Map	ping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2	3	1	1	1	2	2	2	3	3	3	2
CO2	3	3	2	3	3	2	1	1	2	3	2	3	3	2	2
CO3	3	3	2	3	3	2	1	2	2	2	2	3	3	3	3
CO4	3	3	3	3	3	2	2	2	2	2	3	3	3	3	3
CO5	2	2	2	2	2	3	3	3	2	2	2	3	2	2	3
	'3'High '2' Moderate '1' Low '-' No Correlation											on			

Semester:	7 th		Subj	ect Na	me: C	Cloud (Compu	iting							
							C	ourse	Outco	mes					
CO1								composition compos			applic	ations	in mod	lern inc	lustries,
CO2				_	_						_		erage cl vations.		nputing
CO3		-		-					_				urce ma	_	ent, and
CO4		ain an understanding of SLAs, billing, cloud service management, data management, and large- ale data processing, and their impact on cloud infrastructure.													
CO5	Understand cloud security at various levels, including data protection, authentication, SLa apply security principles to real-world case studies.													As, and	
						CO-PSO Mapping									
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	2	2	1	1	2	2	3	3	2	2
CO2	3	3	2	2	3	2	2	1	2	2	3	3	3	3	2
CO3	3	3	3	3	3	2	2	1	2	2	3	3	3	3	3
CO4	2	2	2	3	3	2	2	2	2	2	3	3	2	3	2
CO5	2	2 2 2 3 3 3 3 2 2 3 3 3													
Average	2.6	2.4	2.2	2.6	3	2.2	2.2	1.6	1.8	2	2.8	3	2.6	2.8	2.4
	'3'High				'2' Moderate '1' Low '-' No Correlation								on		

Semester: '	7 th		Subj	ect Na	me: R	Lemote	Sensi	ng and	d GIS						
							C	ourse	Outco	mes					
CO1	Unde	rstand	the ba	asic se	rvices	RSGI	S & m	echani	sms fo	or effect	tive cou	ınter me	easures.		
CO2	Unde	rstand	differ	ent co	ncepts	and te	erms u	sed in	Remo	te Sensi	ing and	its data	l.		
CO3	Unde	rstand	the D	ata coi	nversio	on pro	cess in	differ	ent co	ordinat	e syster	ns of G	IS inter	face.	
CO4	Evalu	ate the	e accu	racy o	f data	and in	npleme	enting	a GIS.						
CO5	Unde	nderstand the applicability of RS and GIS for various applications.													
	CO-PO Mapping CO-PSO Mappi													pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	3	2	1	3	2	1	2	3	3	3	3
CO2	3	3	3	2	3	2	1	2	2	3	3	3	3	3	3
CO3	3	3	3	3	3	2	1	2	2	3	2	3	3	3	3
CO4	3	3 3 3 2 3 2 1 2 2 3 3 3 3													
CO5	3	3 3 3 3 3 1 3 2 3 3 3 3 3													
	'3'High				'2' Mo	oderate	÷	'1' Low '-' No Correlation							on

Semester: 7	7th		Subj	ect Na	me: N	Iinor I	Project	į							
							C	ourse	Outco	mes					
CO1		onstrate ole solu		ability	to ide	ntify re	eal-wo	rld pro	blems	and an	alyse re	equirem	ents for	r develo	pping a
CO2		funda					gramm	ing, ci	rcuit d	esign, o	or embe	dded sy	stems t	to imple	ement
CO3	Desig	n, dev	elop,	and tes	st a pro	ototyp	e/mod	el usin	g appr	opriate	tools, t	echniqu	ies, and	techno	logies.
CO4		valuate system performance using metrics such as speed, accuracy, efficiency, and propose approvements where necessary.													
CO5	Effectively communicate the project's objectives, methodology, results, and findings through w structured reports and presentations.													h well-	
					(CO-PO) Map	ping					CO-PS	SO Map	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1	2	1	1	2	2	2	3	3	2	2
CO2	3	2	3	2	3	1	1	1	2	2	2	3	3	3	3
CO3	3	2	3	3	3	1	2	1	2	2	3	3	3	2	3
CO4	3	3	2	3	3	1	2	1	2	2	3	3	3	3	3
CO5	3	1	1	1	1	1	1	1	3	3	3	3	2	3	2
	'3'High	l	•		'2' Mo	oderate	e		'1'	Low		٠-	' No C	orrelation	on

Semester:	7 th		Subj	ect Na	me: S	umme	r Inter	nship-	II						
							C	ourse	Outco	mes					
CO1	Apply	y engir	neerin	g knov	vledge	and to	echnic	al skill	s to so	olve real	l-world	industr	y probl	ems	
CO2	Deve	lop hai	nds-oı	1 expe	rience	with i	ndustr	y tools	, softv	vare, an	d mode	rn tech	nologie	S	
CO3		nhance teamwork, leadership, and professional communication skills in a workplace nvironment.													
CO4	Unde	Understand ethical, societal, and environmental responsibilities in engineering practice.													
CO5	Engage in lifelong learning by analysing emerging trends and innovations in the industry.														
				CO-PSO Mapping											
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	2	1	1	2	3	3	3	3
CO2	3	3	3	3	3	2	2	1	1	1	2	3	3	3	3
CO3	2	2	2	2	2	3	2	3	2	2	3	3	3	3	2
CO4	2	2 2 2 2 3 3 3 2 2 2 3 3 2													
CO5	3	3	3	3	3	2	2	2	3	3	2	3	3	3	3
	'3'High	1	1		'2' Mo	oderate	2		'1'	Low	I	٠.	' No C	orrelatio	on

Semester: 7	7 th		Subj	ubject Name: Seminar-II											
			ı				C	ourse	Outco	mes		I			
CO1	Deve	lop the	abilit	ty to re	esearch	n, anal	yze, aı	nd pres	sent te	chnical	topics	effectiv	ely.		
CO2	Enhai	nce ora	al and	writte	n com	munic	ation s	skills f	or tech	nical d	ocumer	ntation a	and pres	sentatio	ns.
CO3	Impro	ove cri	tical t	hinkin	g and ₁	proble	m-solv	ving ab	oilities	through	h literat	ure rev	iew and	l discus	sion.
CO4	Gain	ain experience in professional ethics, teamwork, and interdisciplinary collaboration.													
CO5	Deve	Develop lifelong learning skills by staying updated with emerging technologies and trends.													
					CO-PSO Mapping										
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	3	2	1	_	_	2	3	2	3	2	3	2
CO2	1	2	2	2	2	1	_	_	2	3	2	3	2	3	2
CO3	2	3	2	3	2	1	_	_	2	3	2	3	2	3	2
CO4	1	2	2	2	2	2	1	3	3	3	3	2	2	2	2
CO5	2 3 2 3 2 1 1 - 2 3 2 3 3 2												2		
	'2' Moderate '1' Low '-' No Correlation									on					

Semester:	8 th		Subj	ect Na	me: I	nternsl	nip								
			1				C	ourse	Outco	mes		I			
CO1	Apply	y engir	neerin	g knov	vledge	and to	echnic	al skill	s to so	olve real	l-world	industr	y probl	ems.	
CO2	Deve	lop hai	nds-oı	1 expe	rience	with i	ndustr	y tools	, softv	vare, an	d mode	rn tech	nologie	s.	
CO3		Inhance teamwork, leadership, and professional communication skills in a workplace nvironment.													
CO4	Unde	Inderstand ethical, societal, and environmental responsibilities in engineering practice.													
CO5	Engage in lifelong learning by analysing emerging trends and innovations in the industry.														
				CO-PSO Mapping											
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	2	1	1	2	3	3	3	3
CO2	3	3	3	3	3	2	2	1	1	1	2	3	3	3	3
CO3	2	2	2	2	2	3	2	3	2	2	3	3	3	3	2
CO4	2 2 2 2 3 3 3 2 2 2 3 3 2														
CO5	3	3	3	3	3	2	2	2	3	3	2	3	3	3	3
	'3'High					'2' Moderate '1' Low '-' No Correlation									

Semester:	8 th		Subj	ect Na	me: C	Grand \	Viva								
		Course Outcomes													
CO1	Identi	ify a re	al-wo	orld pro	oblem	and ar	nalyse	its req	uirem	ents to p	propose	an inno	ovative	solution	1.
CO2	Deve	lop a f	unctic	nal pr	ototyp	e or m	odel u	sing a	ppropi	riate too	ls, tech	niques,	and tec	hnologi	les.
CO3	Apply	y engir	neerin	g princ	ciples	and do	main-	specifi	c knov	wledge	to desig	gn and o	ptimize	e the pro	oject.
CO4		Collaborate effectively within a team and communicate project details through reports and presentations.													
CO5	Test, validate, and refine the project-based knowledge on performance analysis and feedback													k.	
				CO-PSO Mapping											
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	2	1	1	2	2	2	3	3	3	2
CO2	3	2	3	2	3	1	1	1	2	2	2	3	3	3	3
CO3	3	2	3	3	3	1	2	1	2	2	3	2	3	3	3
CO4	3 3 2 3 3 1 2 1 2 2 3 3 3 3 3														
CO5	2	1	2	2	2	1	1	1	3	3	3	3	2	3	3
'3'High				'2' Moderate '1' Low '-' No Correlation									on		

Semester:	8 th		Subj	ect Na	me: N	lajor I	Project									
			<u> </u>				C	ourse	Outco	mes						
CO1		onstrat ole solu		ability	to ide	ntify re	eal-wo	rld pro	oblems	s and an	alyse re	equiren	nents fo	r develo	pping a	
CO2				al cono	-		gramm	ing, ci	rcuit d	lesign, o	or embe	dded sy	ystems	to imple	ement	
CO3	Desig	gn, dev	elop,	and tes	st a pro	ototyp	e/mod	el usin	ıg appı	opriate	tools, t	echniqu	ies, and	techno	logies.	
CO4		Evaluate system performance using metrics such as speed, accuracy, efficiency, and propose mprovements where necessary.														
CO5	structured reports and presentations.															
		I	I	I		CO-P(I	T	1	I	CO-PSO Mapping			
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	2	1	2	1	1	2	2	2	3	3	2	2	
CO2	3	2	3	2	3	1	1	1	2	2	2	3	3	3	3	
CO3	3	2	3	3	3	1	2	1	2	2	3	3	3	2	3	
CO4	3	3	2	3	3	1	2	1	2	2	3	3	3	3	3	
CO5	3	1	1	1	1	1	1	1	3	3	3	3	2	3	2	
	'3'High				'2' Moderate '1' Low '-' I									' No Correlation		